Predicting river flows for future climates using an autoregressive multinomial logit model
نویسندگان
چکیده
منابع مشابه
The Generalized Multinomial Logit Model
The so-called “mixed” or “heterogeneous” multinomial logit (MIXL) model has become popular in a number of fields, especially Marketing, Health Economics and Industrial Organization. In most applications of the model, the vector of consumer utility weights on product attributes is assumed to have a multivariate normal (MVN) distribution in the population. Thus, some consumers care more about som...
متن کاملOn Rank-Ordered Nested Multinomial Logit Model and D-Optimal Design for this Model
In contrast to the classical discrete choice experiment, the respondent in a rank-order discrete choice experiment, is asked to rank a number of alternatives instead of the preferred one. In this paper, we study the information matrix of a rank order nested multinomial logit model (RO.NMNL) and introduce local D-optimality criterion, then we obtain Locally D-optimal design for RO.NMNL models in...
متن کاملMarket Response Measurement Using the Multinomial , Multiattribute Logit Choice Model
MARKET RESPONSE MEASUREMENT USING THE MULTINOMIAL, MULTIATTRIBUTE LOGIT CHOICE MODEL by Peter Manning Guadagni Submitted to the Alfred P. Sloan School of Management on May 15, 1980, in partial fulfillment of the requirements for the degree of Master of Science. Universal Product Code (UPC) scanning is the key to a new marketing data source. Unfortunately, most existing marketing models do not h...
متن کاملBayesian Inference in the Multinomial Logit Model
The multinomial logit model (MNL) possesses a latent variable representation in terms of random variables following a multivariate logistic distribution. Based on multivariate finite mixture approximations of the multivariate logistic distribution, various data-augmented Metropolis-Hastings algorithms are developed for a Bayesian inference of the MNL model. Zusammenfassung: Das multinomiale log...
متن کاملSemantic Scene Segmentation using Random Multinomial Logit
We introduce Random Multinomial Logit (RML), a general multi-class classifier based on an ensemble of multinomial logistic regression models, and apply it to the task of semantic image segmentation. The algorithm is simple, can be trained efficiently, and has near realtime runtime performance. RML combines the desirable properties of multinomial logistic regression, being stable and theoretical...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Water Resources Research
سال: 2008
ISSN: 0043-1397
DOI: 10.1029/2006wr005127